Exceptional service in the national interest

Analysis of BLT data from VKI Longshot Facility

Ross Wagnild

Sandia National Laboratory PO Box 5800 MS 0825 Albuquerque, NM 87185, USA

Run Conditions

Simulation parameters

- Cone Model
 - 7 degree cone; 800mm long
 - Simulated length of 900mm
 - Wall temperature 293 K
- Freestream gas of ideal N₂
 - Molecular Weight 28.014, $c_p=1038.8\,\mathrm{J/kg/K}$
 - Sutherland's law for viscosity $\mu=\mu_{ref}\frac{T^{3/2}}{(S+T)}$; $\mu_{ref}=1.458e-6$ kg/s/m; S=102.7 K
 - Eucken's relation for thermal conductivity Corresponds to Prandtl number of 0.736

Conditions:

								Streamwise Wall-normal		
Case	P (Pa)	Rho (kg/m³)	T (K)	V (m/s)	Mach	Re (1/m)	Nose (mm)	cells	cells	
1	262	1.23993E-02	71.2	1727	10.04098	4.25119E+06	0.05	1615	300	
2	277	1.34298E-02	69.5	1689	9.939415	4.62379E+06	1.75	820	300	
3	496	2.51703E-02	66.4	1781	10.72268	9.60919E+06	1.75	820	300	
4	566	2.97532E-02	64.1	1930	11.82638	1.28010E+07	4.75	680	300	

Stability Results

N factor trends

- Increasing Reynolds number results in more amplification
- Increasing nose radius results in less amplification

Transition N factor: N_{cr}

- Most amplified frequency= f
- Decreases with increasing Re
 - Contradicts Marineau et al. 2014-3108

Transition location (s-mm)	Distance from Nose (x-mm)	N _{cr}	f (kHz)	
550	545.54011	5.133439	204.4589	
690	672.24720	5.813866	183.91	
400	384.40882	4.825988	331.97	
710	670.48160	2.89695	260.52	

Maximum N factor for all cases tested

Stability Results

Phase Velocities

- Calculated values based on most amplified disturbance
- Measured values approximated from figures 13 and 14
- Normalized (U_c/U_e) values approximated from LST diagram

Group Velocity from paper (m/s)	Calculated	~U _c /U _e
N/A	1540	0.93
1650	1500	0.93
1700	1600	0.94
1950	1700	0.92

Phase velocity for most amplified disturbance for all cases tested

Sensor locations

- Sensor locations converted from sharp cone distance to axial distance from the physical nose of the model.
- These are stated for verification:

sensor	1	2	3	4	5	6	7	8
s (along the surface from a theoretically sharp nosetip, mm)	190	270	370	430	490	630	670	710
x (along the axis, mm)	188.58	267.99	367.24	426.79	486.35	625.30	665.01	704.71
Case 1	188.22	267.63	366.88	426.43	485.99	624.94	664.65	704.35
Case 2	175.97	255.38	354.63	414.19	473.74	612.69	652.40	692.10
Case 3	175.97	255.38	354.63	414.19	473.74	612.69	652.40	692.10
Case 4	154.36	233.76	333.02	392.57	452.12	591.08	630.78	670.48

 Frequency data extracted at each sensor location in the next 2 slides.

Frequency Data

 Predicted frequency content at each sensor sampled for the LST data

Case 1: 0.05mm

x=190mm x=270mm x=370mm x=430mm x=490mm x=630mm x=670mm x=710mm N Factor 150 200 250 300 350 400 450 Frequency (kHz)

Case 2: 1.75mm

Frequency Data

 Predicted frequency content at each sensor sampled for the LST data

Case 3: 1.75mm

x=190mm x=270mm x=370mm x=430mm x=630mm x=670mm x=710mm Frequency (kHz)

Case 4: 4.75mm

Case 2: Frequency Data Comparison

STABL frequency predictions compare well with experimental data and previous computations

Case 2: Frequency Data Comparison

 A closer view shows STABL predicts similar frequencies as VESTA, but larger N factors

Summary

- STABL stability analysis
 - Maximum N factor trends agree well with previous data
 - Transition N factor difference between Case 2 and Case 3 disagrees with previous data. Requires another look
 - Predicts disturbance frequencies that agree with experiments and VESTA computations
 - Predicts larger N factors than VESTA